EPA working to learn about protecting trains from coronavirus

Americans have been avoiding public transportation by the millions. People are simply squeamish about what might be festering on poles and grab handles in buses and subways. Especially with coronavirus abroad in the land. The EPA is trying to help. It’s running a program in conjunction with two big municipal transit agencies, to test chemicals that can clean these surfaces and keep them clean.

Researcher and chemical engineer in EPA’s office of research and development, Shawn Ryan, joined Federal Drive with Tom Temin with the details.

Tom Temin: Tell us what you’re doing.

Shawn Ryan: We’re working with two of our stakeholders, New York City’s Metropolitan Transit Authority and the LA Metro. We’re trying to learn from them as stakeholders of the research that we do and what we provide, as well as provide them the information that they can then use and learn from to help them deal with the challenges that they’re dealing with every day.

Tom Temin: So you’re trying to discover which cleaning agents can be, I guess, federally approved for pollution purposes, but also can clean the surfaces so that they stay clean even after people touch them.

Shawn Ryan: EPA has a pretty good list put together. It’s called List N and it’s an EPA website, of disinfectants that work to kill the human coronavirus. So they’re applied to surfaces, they’re gonna kill coronavirus, and they’ve been proven to work very well. And so I want to be really clear that New York and LA Metro they’re conducting well thought all and extensive cleaning and disinfection practices using those disinfectants and those disinfectants. Typically what they are is you apply them to surfaces they kill the virus and that’s it, and so you have to continue to reapply them in order to continue to clean those surfaces and disinfect those surfaces. So if you can imagine if there are products or products that can have a residual effect, if you can apply this product to the surface and it continues to kill the coronavirus or any other virus for days to weeks to months, it can certainly help what they’re doing and help reduce the amount of cleaning and disinfection that they have to do in order to keep these surfaces free from coronavirus.

Tom Temin: And what are some of the chemicals in use now that will kill the coronavirus at least the first time?

Shawn Ryan: Sure, if you go to the EPA’s website or CDC there’s I think 480 products and things like bleach and 70% isopropyl alcohol. There’s many different types of products that are helpful as registered disinfectants and then they’ll have a claim that also then applies to SARS-CoV-2.

Tom Temin: So is the issue here that yes these materials will clean the surfaces but then the next load of passengers that touches it will undo the cleaning and you’re trying to find things that will keep it clean, is that the issue?

Shawn Ryan: That’s the potential. So for these surfaces, handrails or anything you can imagine that someone just touched it before you got on it and had to touch it or you went to it in had to touch it, that person has a potential to shed virus or put virus onto that surface, and then you touch it and touch your face or do whatever and you have the potential to then the contract COVID-19. That’s the idea here. And so yeah, if there is a product that after I touch it, you come along Tom and touch that surface and it has already killed the virus that I might have put on that surface, it can help obviously, alleviate any potential transmission from surfaces.

Tom Temin: What are the tests happening? Tell us about the activities to try to discover that particular quality in some of these cleaners.

Shawn Ryan: What we’re looking at is we’ll take materials, your common materials, whether it’s metal, whether it’s plastic, or glass, or fabrics, we’re applying these products that could potentially serve as a residual disinfectant. What they are is typically a protective coating that’s applied to a surface, sprayed onto a surface allowed to dry. And then that coating is meant to maybe provide some virucidal activity or ability to kill the virus for days, two weeks, two months after that application on those surfaces.

So that’s exactly what we’re testing. We’re coating these surfaces with the product or applying the virus to the product. What can we pull back off of those surfaces in terms of infectious virus and what happens a week later if we try that same experiment again? What happens a month later if we try that same experiment again? Some of the challenges we’re looking at is, well that’s great is the product you can put it on and it can kill the virus for that day that week, that month, but what these products are going to be experiencing in the field is normal wear and tear, your normal touching of the surface, your exposure to UV and other weathering conditions. So we also have to figure out ways to test that product’s durability as well.

Tom Temin: And if they prove that they can work and can be applied, whether some of the spray on methods or paint on methods or fumigating, whatever you do, then is there a process to get them approved by EPA for that new purpose.

Shawn Ryan: So what’s the right way to test that efficacy? As I mentioned, these products typically are not what is called disinfectants. They don’t typically kill bacteria, which is usually the first step in proving something as an effective disinfectant. But they may kill a virus, so they kind of fall in a new class or a different class for a registered product, and we’re trying to figure out what’s the best way to get these products out there if they truly are effective and make sure that they do pass some bar that does show they’re both safe and effective.